16 research outputs found

    Quantum Walks with Non-Orthogonal Position States

    Get PDF
    Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.Comment: 5 pages, 4 figure

    Quantum walk of a trapped ion in phase space

    Full text link
    We implement the proof of principle for the quantum walk of one ion in a linear ion trap. With a single-step fidelity exceeding 0.99, we perform three steps of an asymmetric walk on the line. We clearly reveal the differences to its classical counterpart if we allow the walker/ion to take all classical paths simultaneously. Quantum interferences enforce asymmetric, non-classical distributions in the highly entangled degrees of freedom (of coin and position states). We theoretically study and experimentally observe the limitation in the number of steps of our approach, that is imposed by motional squeezing. We propose an altered protocol based on methods of impulsive steps to overcome these restrictions, in principal allowing to scale the quantum walk to several hundreds of steps.Comment: 4 pages, 4 figure

    Experimental simulation and limitations of quantum walks with trapped ions

    Get PDF
    We examine the prospects of discrete quantum walks (QWs) with trapped ions. In particular, we analyze in detail the limitations of the protocol of Travaglione and Milburn (PRA 2002) that has been implemented by several experimental groups in recent years. Based on the first realization in our group (PRL 2009), we investigate the consequences of leaving the scope of the approximations originally made, such as the Lamb--Dicke approximation. We explain the consequential deviations from the idealized QW for different experimental realizations and an increasing number of steps by taking into account higher-order terms of the quantum evolution. It turns out that these become dominant after a few steps already, which is confirmed by experimental results and is currently limiting the scalability of this approach. Finally, we propose a new scheme using short laser pulses, derived from a protocol from the field of quantum computation. We show that the new scheme is not subject to the above-mentioned restrictions, and analytically and numerically evaluate its limitations, based on a realistic implementation with our specific setup. Implementing the protocol with state-of-the-art techniques should allow for substantially increasing the number of steps to 100 and beyond and should be extendable to higher-dimensional QWs.Comment: 29 pages, 15 figue

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Quantum Odyssey of Photons

    No full text
    corecore